
D. Štefánik

Simple software for preparation of CTM emission inputs: emPY

Dušan Štefánik

Slovenský hydrometeorologický ústav, Jeséniova 17, 833 15, Bratislava

dusan.stefanik@shmu.sk

Abstrakt

Predložená práca popisuje jednoduchý softvér na prípravu emisií do chemicko-transportného modelu: emPY.
Program emPY bol vyvinutý na SHMÚ pre vnútorné účely, avšak je voľne dostupný a stiahnuteľný na stránkach
GitHub. Je naprogramovaný v jazyku Python 3. Pozostáva z troch hlavných podprogramov, ktorých účelom je:
a) rozmiestniť emisie z emisných inventarizácií do domény chemicko-transportného modelu s definovaným ro-
zlíšením a projekciou, b) vykonať podrobnú speciáciu nemetánových prchavých organických zlúčenín NMVOC
a jemných častíc PM2.5 na chemické zlúčeniny vyžadované chemicko-transportným modelom, c) na základe
časových profilov vytvoriť z ročných emisných vstupov hodinové emisné výstupy v požadovanom formáte
netCDF4. Pomocou modelu emPY boli vygenerované emisie pre model CMAQ vo viacerých projektoch. V
dvoch rozsiahlejších projektoch bol použitý pri posudzovaní dopadu zníženia emisií na zmenu koncentrácií.
Jeden z nich bol projekt v spolupráci so Svetou bankou pod názvom: Reimbursable Advisory Services, výsledky
ktorého by mali byť zahrnuté v Stratégii na zlepšenie kvality ovzdušia. Druhým z nich bol medzinárodný projekt
pod názvom: Implementation of Air Quality Plan for Malopolska Region Malopolska in a Healthy Atmosphere.
Okrem týchto projektov boli výstupy z modelu emPY použité aj pri detailnejšom modelovaní kvality ovzdušia
na Slovensku, ktorého výsledkom sú mapy priemerných koncentrácií niektorých znečisťujćich látok v roku
2017 s rozlíšením 1,5 km. Tieto mapy boli taktiež zahrnuté do kompozitných máp FAIRMODE. Výsledné
koncentrácie agregované za okresy sú použité v ďalšom projekte MŽP skúmajúcom dopad znečistenia ovzdušia
na zdravie obyvateľov pod názvom: Drivers and Health Impacts of the Ambient Air Pollution. Jedným z cieľov
prezentovaného článku je snaha o zavedenie dobrej praxe v SHMÚ, aby sa k vyvinutým zdrojovým kódom
tvorili stručné používateľské príručky, čím by boli dostupné aj pre iných používateľov.

Kľúčové slová: emisie, časové profily, speciácia, chemicko-transportný model, kvalita ovzdušia

Anotation
A simple software for preparation of emission inputs for chemical-transport (CTM) model was developed. This
software consists of three main subprograms that subsequently import various emissions inputs to the model
domain, make the speciation of PM2.5 and NMVOC pollutants, and disaggregate the annual emissions to the
hourly profiles. Final outputs of the program are the CMAQ-ready emission inputs files in standard netCDF
format.

Keywords: emissions, time profiles, speciation, grid allocation, chemical-transport model, air quality

1 Introduction - why the software for preparation of CTM emission inputs is
needed

D. Štefánik

The emission inventories are prepared by experts often aggregated on national, regional, or district levels.
Usually, they only provide annual sums with very rough speciation - e.g. only values of all non-methane volatile
organic compounds NMVOC and fine particles PM2.5 are available. However, chemical-transport models
require emissions: a) in specific gridded domain, b) speciated according to the chemistry mechanism used in
the model (e.g. instead NMVOC it requires emissions in more verbose form like isoprenes, ethane etc.) c)
with hourly time variation d) in model-ready format.

The presented software emPY fully solves the steps b), c), d). The step a) is partially solved, the emPY allocates
emissions in specific gridded domain specified by arbitrary projection and resolution, but does not provide
so called top-down spatial dis-aggregation. Top-down approach means that emissions from the large scale
(national level) are dis-aggregated to higher resolutions (to the specific urban areas, roads etc.) using suitable
geographical proxy data. This top-down dis-aggregationis currently done by several institutions like TNO or
EMEP and are provided to European countries for modelling purposes.

2 Installation of the emPY software

The emPY model is based on the Python 3 programming language. Basic knowledge of this popular, effective
and easy to use programming language is required.

Following the steps bellow, you will be able to use the emPY in the proper way:

1. Download and install the Anaconda distribution of Python https://www.anaconda.com/distribution/ .

2. Make a new conda environment https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-
environments.html by: conda create –name myenv, where myenv is arbitrary name for your new environ-
ment in which emPY software will be running

3. Install geopandas library to the myenv environment by: conda install -c conda-forge geopandas

4. Install pytz, netCDF4 libraries

5. test if all required libraries are properly installed by typing in the ipython prompt:
import geopandas
import netCDF4
import numpy
import pandas
import shapely
import pyproj
import pytz

6. Download the software from the GitHub page https://github.com/dusssaaan/SHMU/tree/master/emPY/

3 Description and running of the emPY software

The emPY software was developed at SHMU for the preparation of the emission inputs for the CMAQ chemical-
transport model. It is fully written in Python programming language and is structured in easily-extensible way
- it means that user can easily add some new functionality. It consists of the three main subprograms and
some preprocessors. The software was inspired by SMOKE [1] and FUME [2] emission processors. Although
above mentioned processors are more universal and robust they were not appropriate for purposes of SHMU
. Presented model emPY is just suited for the CMAQ model [3, 4] and for purposes of SHMU, but is free to

3.1 to domain program D. Štefánik

use and available in the GitHub site. It does not produce biogenic emissions since this is done in CMAQ by
internally. The schematic description of the emPY software is shown in Figure 1. The file structure of the
software is shown in Appendix A, where the file structure of the output data is also shown. Adhering to this
structure is very important in order to avoid possible confusions which can appear in processing of large number
of the emission inventories.

The description of the individual subprograms and way of their usage are presented in the following subsections.

Figure 1: Schema of the emPY software

3.1 to domain program

Main purpose of the to domain program is to convert emission inventories of the area, line, and point sources to
the gridded domain with projection and resolution of the CTM model. It also translates the specific inventory
category numbers and pollutant names from given emission inventories to unified numbers and names used in
the model.

The required input files for to domain program except the proper emission inventory are config file.py and
inventory input.py. In the config file.py there are general configurations like a definition of projection and
grid parameters of the final domain, input and outputs directories, and paths to the input files. It also con-
tain list of internal emPY emission names. In order to import the inventory emissions to the emPY model
in a properly way, the inventory input.py file is required. It contains Python dictionary d. For each emission
inventory which user wants to include in the model, the specific item of dictionary needs to be created as follows:

d[’SVK cat 02 point’]={
’source type’:’P’,
’type file’:’csv’,
’input file’:’/data/users/emPY/cat2 point NEIS.csv’,
’sep’:’;’,

3.1 to domain program D. Štefánik

’encoding’:’utf-8’,
’one cat’:220,
’x’:’lon’,
’y’:’lat’,
’def heights’:’zero’,
’ID’:’id’,
’EPSG’:4326,
’def emis’:{’tzl m’: ’PM’, ’pm10 m’: ’PM10’, ’pm2 5 m’: ’PM2 5’, ’so2 m’: ’SO2’, ’nox m’: ’NOX’},
’units’:’t/year’, }

From the dictionary item defined above, the emPY knows that the inventory SVK cat 02 point is a point
source inventory which is saved in the file /data/users/emPY/cat2 point NEIS.csv. Possible keys in d[inventory
name] are different for area, line and point sources and are explained and summarised in Tables 1,2, and 3. As
explained in Appendix A, do not use the symbol ’-’ in the inventory name.

The optional file new pollutants.csv allows to calculate a new emission species absent in the emission inventory,
based on the species which are included. For example, one can calculate NO2 as NO2=0.05*NOX.

Other optional files are mask files. One can define a mask for point sources as a shape file with one polygon
geometry from which they want to mask out data for a given inventory. For the area sources, a mask in form of
a numpy array with values ranging from 0 to 1 is required. This mask can be created within emPY preprocessor
tool mask out.

As one can see from Appendix A, outputs of the to domain program are numpy arrays for the area and line
sources for each internal emission category and pollutant name. For the point sources, outputs are in form of
csv files.

Figure 2: Example of the output from the to domain program

3.1 to domain program D. Štefánik

3.1.1 Area sources

Inventory emissions for the area sources can by in three formats a) in a shape-file with various polygons with
specific emissions b) in a csv format, regularly gridded in projection defined by EPSG c) in a combination of a
csv file, in which the emissions are specified, and shape file in which the geometries are specified. The possible
keys in dictionary item in inventory input file for the area sources are in Table 1.

key values case in use
source type ’A’ mandatory

type csv or csv+shape or shape mandatory
input file string path to the file if type = csv or csv+shape

sep separation sign in the input file, like ’,’ or ’;’ etc. if type = csv or csv+shape
encoding encoding of input file like ’utf-8’ or other if type = csv or csv+shape
shape file string path to the shape file if type = shape or csv+shape

cat internal string name of columns with inventory number optional
emission inventory dictionary: conversion to internal cat numbers if cat internal is presented

one cat internal cat number of input file if cat internal is not presented
source id string name of id columns in input file if type = csv+shape
shape id string name of id columns in shape file if type = csv+shape
def emis dictionary: conversion to internal emission names mandatory

x string name of x coordinate columns if type = csv
y string name of y coordinate columns if type = csv

grid dx float number of x size of the grid if type = csv
grid dy float number of x size of the grid if type = csv
EPSG int number of EPSG projection if type = csv
units ’mg/year’, ’g/year’,’kg/year’, ’t/year’, ’kilot/year’ mandatory

Table 1: Keys in inventory input file for the area sources

3.1.2 Line sources

Line sources can be defined in the same way as the point or area sources. In case they are defined by shape-file
with line geometries, the emPy needs to treat them separately. The possible keys in a dictionary item in the
inventory input file for the line sources are listed in Table 2. Only shape files with one emission category is
now allowed in the emPY.

key values case in use
source type ’L’ mandatory
shape file string path to the shape file mandatory
one cat internal cat number of input file mandatory

def emis dictionary: conversion to internal emission names mandatory
units ’mg/year’, ’g/year’,’kg/year’, ’t/year’, ’kilot/year’ mandatory

Table 2: Keys in inventory input file for the line sources

3.2 speciate program D. Štefánik

3.1.3 Point sources

Inventory emissions for the point sources can be in a shape-file or a csv format. Possible keys and values for
the point sources dictionary item are in Table 2 .

If the key ’def heights’ is set to ’zero’, point sources are treated as surface area sources and no stack information
are required by the emPY model. Output of the to domain script for point sources with ’def heights’ different
from ’zero’ are csv files in a separate directory (see the file structure of the output data in Appendix A). If
the ’def heights’ is set to False, the function apply stack parameters in the module convert to empy names.py
is applied and default parameters are given to the stacks according to the parameter dictionary defined in this
function. For the explanation, see comments in the convert to empy names.py file.

key values case in use
source type ’P’ mandatory

type csv or shape mandatory
input file string path to the file if type = csv

sep separation sign in the input file, like ’,’ or ’;’ etc. if type = csv
encoding encoding of input file like ’utf-8’ or other if type = csv
shape file string path to the shape file if type = shape

cat internal string name of columns with inventory number optional
emission inventory dictionary: conversion to internal cat numbers if cat internal is presented

one cat internal cat number of input file if cat internal is not presented
def emis dictionary: conversion to internal emission names mandatory

x string name of x coordinate columns if type = csv
y string name of y coordinate columns if type = csv

def heights True or False or ’zero’ mandatory
ID string name of columns with ID stack number if def heights = True

height string name of columns with ID height if def heights = True
diameter string name of columns with ID diameter if def heights = True

temperature string name of columns with ID plum temperature if def heights = True
velocity string name of columns with ID plum velocity if def heights = True
EPSG int number of EPSG projection if type = csv
units ’mg/year’, ’g/year’,’kg/year’, ’t/year’, ’kilot/year’ mandatory

Table 3: Keys in inventory input file for the point sources

3.2 speciate program

Main purpose of the speciate program is to speciate non-methane volatile organic compounds (NMVOC) and
fine particles PM2.5 to the more detailed species required by the model. It requires the following files: con-
fig file.py, emission categories.csv, and GSPRO files for aerosols and gases. In config file.py, user sets the
input and output data file path and specifies the list of the emission inventories which he wants to include to the
model outputs. In emission categories.csv file, user needs to assign aspeciation number according which the
speciaton will be provided, for the each emission category which he defined in the inventory input.py file, and
he wants to include to the model. In the GSPRO files for each speciation number, there is a line with name of a
unspeciated species, name of a species after the speciation, coef1, coef2 and coef3. If the speciation number is
0 in the GSPRO file it means that the speciation will be done for every category. The speciation is done as

emission of the specied pollutant = emission of the unspecied pollutant* coef1/coef2.

3.3 time variate program D. Štefánik

The specied emissions are then in the kmols for gasses or tons for particles. The GSPRO files are same as in
the SMOKE model [5].

Beside speciation the speciate program also group all point sources from the output of the to domain program
to one csv file and creates CMAQ-ready netCDF4 file with stack parameters.

3.3 time variate program

Main purpose of the time variate program is to prepare daily CMAQ-ready emission files with hourly time
steps. It requires next files: config file.py, emission categories.csv, and time profile files. In config file.py
user sets the input and output data file path, final emission species and date range of the simulation. In
emission categories.csv file user needs to assign for the each emission category which he wants to include it to
the model, the time profile number according which the time variation will be provided. The time variation is
then done by the default time profiles defined in the files tv map.csv and tv values.csv, or by specific time factors
defined in tv series.csv

4 Run the emPY software
Following next steps one can run the emPY sofware

• cp -r case run my run

• adjust the config file.py, inventory input.py, emissions categories, or possibly all other files in my run
directory

• cd ${HOME emPY directory}/to domain
vi run to domain.py
change the first line of the script to
#!/usr/bin/env path to your python environment
change case path in the script to point to my run
./run to domain.py > log
after successfully running of the program you should obtain output data in numpy array files and csv with
the structure as in the Appendix A . This files represent yearly emissions in the domain.

• cd ${HOME emPY directory}/speciate
vi run speciate.py
change the first line of the script to
#!/usr/bin/env path to your python environment
change case path in the script to point to my run
./run speciate.py > log
after successfully running of the program you should obtain output data in numpy array files which
contains yearly speciated emissions. For the point sources you obtain one csv files with yearly speciated
emissions and one CMAQ-ready netCDF4 file with stacks parameters.

• cd ${HOME emPY directory}/time variate
vi run time variate.py
change the first line of the script to
#!/usr/bin/env path to your python environment
change case path in the script to point to my run
./run time variate.py > log
after successfully running of the program you should obtain for each day in simulation 2 kinds of the
output data in CMAQ-ready netCDF4 files one for the area surface emissions and second for the elevated
point sources.

D. Štefánik

If you want to run the benchmark data you can just set case path to the case run path and adjust config file.py,
inventory input.py with proper iput and output directories. The benchmark data are on the GitHub page of the
emPY project.

If you want to view intermediate data produce during the run of the emPY software, Python offers a lot of
libraries for great visualisation. We offer simple tool npyview in tools directory, which can be used as follows:

npyview 2D numpy array.npy

you just need to add path to your .bashrc file for example as:

alias npyview=’path to npyview tool/npyview.py’

5 Projects in which the emPY software was used

Meantime the emPY software was used in two large project in which the impact of emission reduction scenarios
on the concentrations was assessed using the chemical-transport model. One was the Reimbursable Advisory
Services (RAS) project by World Bank. The results of this project should be included in the Air Protection
Strategy of Slovak Republic. The second project in which emPY was used is international LIFE-IP Integrated
Project “Implementation of Air Quality Plan for Malopolska Region Malopolska in a healthy atmosphere”. In
this project 101 emission inventories are used as inputs to emPY and it is a most complex case in which the
emPY was tested. Besides this two project the emPY software was also used as the emission input for the
CMAQ detailed 1.5 km resolution simulation, from which the air quality maps for the year 2017 was done.
These maps was also included in the Fairmode EU Composite Maps exercise. The emPY software was also
used as an input in the calculation of district concentrations of specific air pollutants in Slovakia which is now
used in the project: Drivers and health impacts of the ambient air pollution.

6 Conclusions
The software for preparation of CTM emission inputs - emPY is presented. emPY is an open-source product
developed at SHMU for internal purposes, but is available free on GitHub for any user. It prepares CMAQ-ready
emission files. The software is written in Python 3 programming language. The emPY software has already
been used for the preparation of the emission inputs for CMAQ model for several projects One of the aims of
the presented paper is the effort to introduce good practice in the developing code at SHMU which also includes
preparation of documentation and user guides. Without documentation is not possible to share the code with
other potential users.

Acknowledgements

I would like to express gratitude to Nina Benešová and Ondrej Vlček from the Czech Hydrometeorological
Institute, Peter Huszar and Michal Belda from the Charles University for their detailed explanation of the general
features of emission processors. Also, I would like to thank to my colleges from the OMKO SHMÚ department
for great working atmosphere.

References

[1] Baek, B. H., Seppanen, C., and Houyoux, M.: SMOKE v2.6 user’s manual, http://www. smoke-
model.org/version2.6/,

REFERENCES D. Štefánik

[2] Benešová et al.,(2018): New open source emission processor for air quality models. In Sokhi, R., Tiwari,
P. R., Gállego, M. J., Craviotto Arnau, J. M., Castells Guiu, C. Singh, V. (eds) Proceedings of Abstracts
11th International Conference on Air Quality Science and Application. DOI: 10.18745/PB.19829. (pp. 27).
Published by University of Hertfordshire. Paper presented at Air Quality 2018 conference, Barcelona, 12-16
March.

[3] U.S. EPA. EPA’s Report on the Environment (Roe) (2008 Final Report). U.S. Environmental Protection
Agency, Washington, D.C., EPA/600/R-07/045F (NTIS PB2008-112484), 2008

[4] Štefánik, D., 2017: Air quality modeling using the CMAQ model, Zborník príspevkov 18. konferencia
mladých meteorológov a klimatológov, SHMÚ Bratislava, 22.-24.11.2017 ISBN 978-80-88907-95-4

[5] https://www.cmascenter.org/smoke/documentation/2.1/html/ch08s05s02.html#tbl input gspro

D. Štefánik

A Appendix: File structure of the emPY program and its outputs

The file structure of the emPY software is following:

emPY/
|
+−− case run/
| |
| +−− config file.py
| +−− inventory input.py
| +−− new pollutants.csv
| +−− emission categories.csv
| +−− AERO GSPRO file.csv
| +−− tv map em.csv
| +−− tv series.csv
| +−− tv values.csv
|
+−− to domain/
| |
| +−− run to domain.py
+ | − − src to domain/
| |
| +−− new pollutants.py
| +−− area to domain.py
| +−− line to domain.py
| +−− point to domain zero.py
| +−− point to domain.py
| +−− new pollutants point.py
| +−− new pollutants area.py
| |
+−− speciate/
| |
| +−− run speciate.py
+ | − − src speciate/
| |
| +−− group point sources.py
| |
+−− time variate/
| |
| +−− run time variate.py
+ | − − src time variate/
| |
| +−− to netCDF.py
+−− tools/

D. Štefánik

The file structure of the output data should to be following:

${HOME emPY directory}/data/outputs/
|
+−− outputs-to domain-{name of case run}/
| |
+ | − − {inventory name 1}/
| |
| +−− {id cat 1}-{internal pollutant name 1}-{inventory name 1}.npy
| +−− {id cat 1}-{internal pollutant name 2}-{inventory name 1}.npy
| +−− {id cat 2}-{internal pollutant name 1}-{inventory name 1}.npy
| .
| .
| .
+ | − − {inventory name 2}/
| |
| .
| .
| .
+ .
| .
| .
+ | − − point sources/
| |
| +−− {point inventory name 1}.csv
| +−− {point inventory name 2}.csv
| .
| .
| .
|
+−− outputs-speciate-{name of case run}/
| |
| +−−{id cat 1}-{speciated pollutant name 1}.npy
| +−−{id cat 1}-{speciated pollutant name 2}.npy
| +−−{id cat 2}-{speciated pollutant name 1}.npy
| .
| .
| .
+ | − − point sources/
| |
| +−− speciate points.csv
| +−− STACK PARAM.nc
| |
+−− outputs-time variate-{name of case run}/
| |
| +−−AREA EMISSIONS-YYYY-MM-DD.nc
| +−− POINT EMISSIONS-YYYY-MM-DD.nc

Note that the symbol ’-’ is important in the data structure of the output files since it serves as a separator symbol.
From this reason it is forbidden to use symbol ’-’ in inventory and pollutant names.

