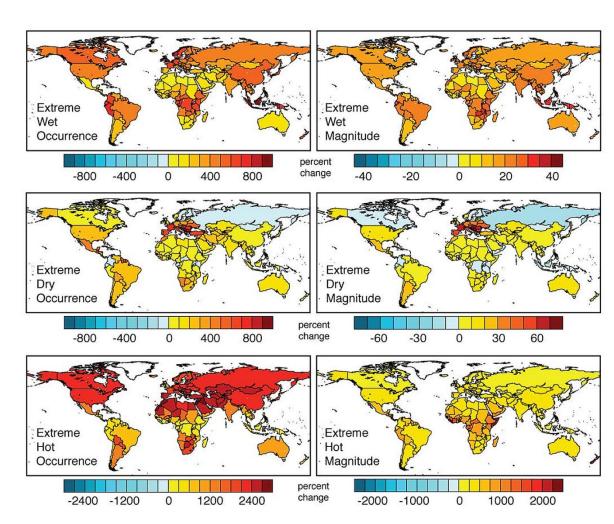


Challenges for European research on climate change impacts and adaptation

Professor Jørgen E. Olesen



Challenges of agriculture in 21st century

To manage changes in mean and extreme climate:

- Increasing atmospheric CO₂ concentration
- Increasing temperatures
- Changes in rainfall
- Changes in extreme events:
 - > Heat waves
 - > Droughts
 - > Floods
 - > Hail
 - > Storms

Issues for studying agriculture and climate change

Impacts on crop yield and quality

- > Direct effects from changes in CO₂, temperature and rainfall and their variability
- > Effects of extreme events (drought, flood, storms)
- > Indirect effects through nutrient availability, pests and diseases

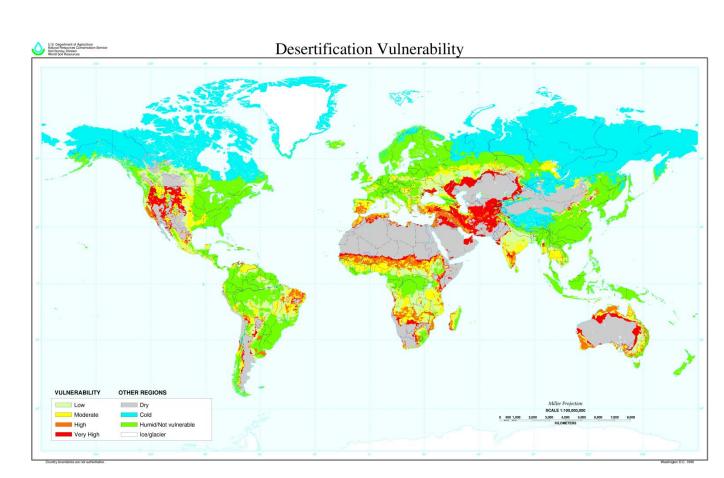
> Adaptation

- Autonomous adaptation (sowing date, crop choice, cultivar choice)
- > Planned adaptation (water supply for irrigation, breeding, support for adandonment)

> Environmental and resource effects

- Nitrogen and phosphorous losses to the environment
- > Water overuse from surface and groundwater
- Soil degradation

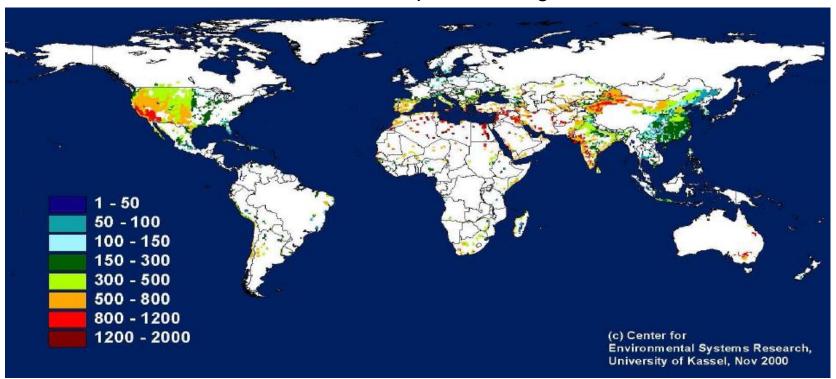
> Effects on greenhouse gas emissions


- > Changes in soil carbon from soil and crop management and from climate
- > Emissions of nitrous oxide and methane from farming systems
- > Mitigating greenhouse gases from agriculture

Soil degradation

- ✓ Erosion
- ✓ Reduction i soil carbon (humus)
- √ Compaction (especially in subsoil)
- ✓ Pollution
- ✓ Salinisation
- ✓ Desertification

Many of these processes are exacerbated by climate change



Pressure on freshwater resources

- √14% of world agricultural area is irrigation
- √40% of agricultural production comes from irrigated agriculture
- √70% of freshwater abstraction is used for irrigation.
- ✓Increasing problems with drying out and pollution of rivers and lakes

Water consumption for irrigation

Nutrient losses from agriculture affect ecosystem services of other parts of the landscape

Linking adaptation and mitigation

Adaptation

Mitigation

Responsiveness

Management

Agricultural system

Diversity

Fertility

Efficiency

Resilience

Technologies

Methods of studying climate change impacts

- > Crop simulation models
- > Empirical (statistical) models
- › Agroclimatic indices
- > Space for time analogies
- > Expert knowledge
- > Manipulation experiments (controlled environment or free air)

Current and future crop rotations on loamy soil in Denmark (analogy and expert knowledge)

Area coverage	Present crop rotation	Future crop rotation	
80% (arable/pig	Winter barley	Winter barley	
farms)	Winter rape	Winter rape	
,	Winter wheat	Winter wheat	
	Winter wheat	Grain maize	
	Spring barley	Spring barley	
20% (dairy farms)	Spring barley (undersown)	Spring barley (undersown)	
	Grass seed	Grass seed	
	Grass seed	Grass seed	
	Silage maize	Silage maize	
	Silage maize	Silage maize	

Current and future management of winter wheat in Denmark (analogy and expert knowledge)

Operations	GS	Date	Input present	Date future	Input future per
		present	per ha	2050	ha
Ploughing		12 Sep	_	28 Sep	
Sowing		15 Sep		1 Oct	
Application of insecticides	21			20 Oct	0.15 Karate
Application of herbicides	13-21	20 Oct	Boxer EC +	20 Oct	Boxer EC +
			DFF + Oxitril		DFF + Oxitril
			(1+0.04+0.12)		(1,15+0.05+0.12)
Application of nitrogen	25	15. Mar	80 kg N	10 Mar	80 kg N
Application of herbicides	30	1 Apr	0.4 Starane XL	20 Mar	0.4 Starane XL
Application of PGR	31	5 May	none	25 Apr	None
Application of fungicides 1	32	10 May	0.25 Folicur	1 May	0.25 Folicur
Application of nitrogen	32	10 May	85 kg N	1 May	85 kg N
Application of fungicides 2	55	5 Jun	0.75 Bell	28 May	0.75 Bell
Application of insecticides	71	30 Jun	0.15 Karate	20 Jun	0.15 Karate
Application of glyphosate	89	1 Aug	2 l glyphosate	20 Jul	2 l glyphosate
Harvest		15 Aug		1 Aug	

Current and future pesticide treatment frequency index for crop rotations on loamy soil in Denmark (analogy and expert knowledge)

Area	Present crop	TFI	Future crop	TFI
coverage	rotation		rotation	
80%	Winter barley	1.6	Winter barley	0.0
		1,6		2,2
(arable/pig	Winter rape	4,3	Winter rape	5,6
farms)	Winter wheat	3,3	Winter wheat	3,9
	Winter wheat	2,7*	Grain maize	2,5
	Spring barley	1,7	Spring barley	1,3
	Gns BI per year	2,7		3,1
20% (dairy	Spring barley	1,8	Spring barley	1,3
farms)	(undersown)		(undersown)	
	Grass seed	2,3	Grass seed	2,7
	Grass seed	2,3	Grass seed	2,7
	Silage maize	1,6	Silage maize	2,5
	Silage maize	1,6	Silage maize	2,5
		1,9		2,3

^{*} glyphosat not included

Challenges (and opportunities) for research

- > Include indirect effects of climate change into impact studies
- > Study effects of climatic extremes on impacts and adaptation
- Study effects of climate change on resources (soil quality, water availability)
- Study effects of climate change and agricultural management on environmental impacts (N and P losses, GHG emissions)
- > Link impact studies with adaptation and mitigation
- > Quantify uncertainties related to impacts at regional scale
- > Estimate costs of adaptation and mitigation measures at regional scale
- Apply a wider range of methodologies in the studies
- > We have done the easy stuff now lets deal with the important issues